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ABSTRACT  
As intelligent agents (IAs) become more sophisticated, it is crucial to develop user interfaces that make the 
IA’s intent, reasoning and predicted future states transparent to the human operator. Chen et al. leveraged 
Endsley’s model of situation awareness (SA) and developed the Situation awareness-based Agent 
Transparency (SAT) model to organize the issues involved with supporting the human’s awareness of an 
agent’s: current actions and plans (L1), reasoning process (L2), and outcome predictions (L3). Projection 
uncertainty (U) may also be communicated. The current paper presents two human factors studies that 
investigated the effects of agent transparency on the effectiveness of human-agent teaming in military multi-
robot management contexts. The first study investigated effects of levels of agent transparency; the second 
study focused on effects of agent communication framing (agent’s style of communication). The user 
interfaces employed in the experiments were based on the SAT model. Overall, the results showed that 
perceptions of the IA (its aptitude and usefulness) increased with agent transparency. Trust survey results 
showed that the complimentary IA was rated as less trustworthy compared with the critical IA, especially in 
low transparency conditions. Participants tended to agree more with the critical IA when it was more 
opaque than when it was more transparent; on the other hand, participants’ agreements with the 
complimentary IA did not differ regardless of the IA’s transparency. 

1.0 INTRODUCTION 

As autonomous systems become more intelligent and more capable of complex decision making [1][2], it 
becomes increasingly difficult for humans to understand the reasoning process behind the system’s output. 
However, such understanding is crucial for both parties to collaborate effectively, particularly in dynamic 
environments [3][4]. Indeed, Explainable AI [5], a DARPA program announced in August 2016, underscores 
the importance of making intelligent systems more understandable to the human. The U.S. Defense Science 
Board recently published a report, Summer Study on Autonomy [6], in which the Board identified six barriers 
to human trust in autonomous systems, with ‘low observability, predictability, directability, and auditability’ 
as well as ‘low mutual understanding of common goals’ being among the key issues (p. 15).  

1.1 Situation awareness-based Agent Transparency (SAT) Framework 
Chen et al. [3][7] leveraged Endsley’s model of situation awareness (SA) [8][9] and developed the Situation 
awareness-based Agent Transparency (SAT) model, which mirrors the three levels (perception, 
comprehension, and projection) of Endsley’s model (Figure 1). At the first SAT level (L1), the operator is 
provided with the basic information about the agent’s current state and goals, intentions, and proposed 
actions (perception of the environment from the agent’s perspective). At the second level (L2), the operator 
is provided with information about the agent’s reasoning process behind those actions and the 
constraints/affordances that the agent considers when planning those actions (comprehension). At the third 
level (L3), the operator is provided with information regarding the agent’s projection of future states, 
predicted consequences, likelihood of success/failure, and any uncertainty associated with the 

mailto:yun-sheng.c.chen.civ@mail.mil
mailto:kim.stwrs@gmail.com
mailto:ryan.wohleber@gmail.com
mailto:michael.j.barnes.civ@mail.mil


Agent Transparency and Human-Autonomy Teaming Effectiveness      

21 - 2 STO-MP-HFM-300 

 

 

aforementioned projections (projection). Understanding the effects of uncertainty on the third level of SAT 
was considered of particular importance, because projection is predicated on many factors whose outcomes 
are never known precisely [7][10]-[13]. Prior research has shown that agents conveying uncertainty can 
improve the joint human-agent team performance and are also perceived as more trustworthy [10][14][15]. 

 

Figure 1: Situation awareness-based Agent Transparency (SAT) Framework 

1.2 Impact 
Successful operational employment of autonomous systems requires command and control agility. Indeed, 
agility in tactical decision-making, mission management, and control is one of the key attributes for enabling 
heterogeneous unmanned vehicle (UxV) teams to successfully manage the ‘fog of war’ with its inherent 
complex, ambiguous, and time-challenged conditions. Mission effectiveness relies on rapid identification 
and management of uncertainties that can disrupt an autonomous team’s ability to complete complex 
operations. Increasingly, research and development efforts are focusing on developing intelligent agents 
(IAs) that can work with human operators on managing the UxV teams [3][16]. One of those efforts is the 
Intelligent Multi-UxV Planner with Adaptive Collaborative/Control Technologies (IMPACT) project, which 
is currently funded by the ARPI. IMPACT is investigating issues associated with flexible play-calling 
[17][18], global cooperative control and local adaptive/reactive capability, and bi-directional human-
autonomy interaction in military mission contexts [19]. However, in order for the IA to collaborate with 
human operators, the IA must be able to communicate its current and future states and receive commands to 
alter them when necessary [3]. Furthermore, knowledge of the IA’s state of uncertainty has proven to be a 
crucial factor in the ability of humans to interact with automated systems [4][7][10]-[13][20]. In particular, it 
is important for operators to understand not only the locus of the uncertainty, but also to understand its 
source [21]. 

1.3 Current Studies 
Two studies conducted under the IMPACT project are summarized in this paper. The first study investigated 
effects of levels of agent transparency; the second study focused on effects of agent communication framing 
(agent’s style of communication). In both studies, participants completed blocks of mission vignettes, in 
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which they were instructed to choose one of two plans provided by an IA, which always recommended an 
optimal plan (A) and a back-up plan (B). Three out of eight times, plan B was in fact better than plan A, 
based on updated intelligence or commander’s instructions provided to the participants. The participant’s 
task was to select the best plan based on current mission requirements. The user interfaces employed in the 
experiments were based on the SAT model. 

2.0 STUDY 1 

2.1 Methodology 
This experiment utilized a within-subjects design with agent transparency as the independent variable. A 
previous study using the same UI from IMPACT tested the utility of Level 1 transparency and found that it 
was most useful when combined with higher levels of transparency [10]. Thus, transparency was only tested 
at three higher levels: (a) Level 1+2: containing reasoning information, (b) Level 1+2+3: containing 
reasoning and projection information without uncertainty, and (c) Level 1+2+3+U containing reasoning and 
projection with uncertainty. The UI varied per condition by showing corresponding pieces of SAT-level 
information on the map, in text, and on a sliding bar scale (Figure 2).  

 

Figure 2: IMPACT Study 1 

Fifty-three students from an American university were recruited for this experiment. The average age of 
participants was 21.7 years (sd = 3.6). Prior to beginning the experiment, participants completed several 
individual difference surveys, including an Implicit Association Test (IAT) to track any bias they may have 
against technology. They then received about 1 hour of training. The subsequent experiment was divided 
into 3 blocks of 8 missions, with conditions counter-balanced. Using the interface presented in Figure 2, 
participants were presented with two plans to complete each mission, and were instructed to choose just one 
of them to move forward. For each set of plans, the agent always recommended one plan over the other, but 
the human always made the final decision. Reliability of the agent was held constant such that it was right in 
5 out of every 8 scenarios. Information regarding mission objectives and commander’s instructions were 
given before each set of decision options were presented, while information regarding specific mission 
parameters and vehicle capabilities were given on the decision screen (Figure 2). Each experimental block 
(including corresponding surveys) took participants about 30 minutes to complete. 

After each block, participants completed surveys, including a measure of workload on an interval scale from 
1 (low) to 10 (high) (NASA-TLX [22]), and a trust survey using a 7-point Likert scale (modified Trust in 
Automated Systems survey with two subscales [23][24]). Performance was measured throughout by tracking 
total correct responses, “proper use” (instances when the human agreed with the IA and answered correctly) 
and “correct rejections” (instances when the human disagreed with the IA and answered correctly). This  



Agent Transparency and Human-Autonomy Teaming Effectiveness      

21 - 4 STO-MP-HFM-300 

 

 

performance measure was adapted from signal detection theory [25], but signal detection analyses were not 
completed. 

2.2 Results 

2.2.1 Operator Performance - Total Correct Response 

A repeated-measures ANOVA showed significance, indicating an increase in operator performance (Total 
Correct Response, which combines Proper Use and Correct Rejections; Figure 3) with transparency level, 
F(2, 104) = 10.31, p < .001, ηp

2 = .17. Pairwise comparisons showed a significant difference between Level 
1+2 and Level 1+2+3 (p < .05), as well as between Level 1+2 and Level 1+2+3+U (p < .001). Total correct 
responses were highest in the Level 1+2+3+U SAT condition and lowest in the Level 1+2 SAT condition. 

2.2.2 Operator Performance - Proper Use and Correct Rejections 

To examine exactly what areas of performance were most impacted, a repeated-measures MANOVA of 
proper use and correct rejections was performed. A significant multivariate effect indicated an increase in 
performance with transparency across both sub-measures: F(4, 206) = 6.05, p < .001, ηp

2 = .11. A univariate 
effect was found for proper use, F(2, 104) = 10.66, p < .001, ηp

2 = .17. Pairwise comparisons with Bonferroni 
correction indicated a significant difference between Level 1+2 and Level 1+2+3 (p < .01), as well as 
between Level 1+2 and Level 1+2+3+U (p < .001). As can be seen in Figure 3, both proper use and 
correction rejections were highest in the Level 1+2+3+U condition. 

 

Figure 3. Percentage correct for both IA proper use and IA correct rejection rates. 

2.2.3 Operator’s Perceived Workload 

In order to examine operator workload, we conducted a repeated-measures ANOVA on the total NASA-
TLX scores, as well as a repeated measures MANOVA on the 6 unweighted subscales of the NASA-TLX. 
The effect of total workload was not significant, F(2, 104) = .86, p = .43, ηp

2 = .02. The effect of the 
subscales was also not significant, F(12, 198) = .87, p = .58, ηp

2 = .05.  

2.2.4 Operator’s Perceived Trust in the IA 

Individual differences in IAT scores were covaried with participant trust scores in order to account for pre-
existing biases that may affect trust. Trust was thus examined using a repeated-measures MANCOVA across 
the two subscales of our modified trust survey. A significant multivariate effect was found, F(4, 202) = 2.61, 
p < .05, ηp

2 = .05. Additionally, significant main effects of both subscales were found: (a) for integrating and 
diplaying information – F(2, 102) = 3.48, p < .05, ηp

2 = .06, and (b) for suggested decisions – F(2, 102) = 
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4.08, p < .05, ηp
2 = .07. Pairwise comparisons with Bonferroni correction indicated a significant difference 

between Level 1+2 and Level 1+2+3 in suggesting decisions (p < .05; Figure 4).  

 

Figure 4. Trust in integrating and displaying information, as well as suggesting decisions. 

3.0 STUDY 2 

The second study focuses on the human factors aspects of the agent’s transparency and communication 
framing in the context of human-autonomy teaming via IMPACT technologies and capabilities. The overall 
goal of the this study was to understand the interaction between level of agent transparency communication, 
according to the SAT model [3], and the agent’s framing of communication. In line with Dzindolet et al.’s 
findings [21], we expect trust and evaluation of the agent to be higher with a high transparency interface than 
with a low transparency interface. When the agent is more transparent, and critical of the participant’s plan 
decisions (critical framing), it will be perceived better and trusted more than a complimentary agent as it 
highlights reasons for error. On the other hand, we expect that a more opaque yet complimentary agent will 
increase trust in the agent by helping to counteract the overweighing of faults. 

3.1 Methodology 
Twenty-nine students from an American university were recruited for cash payment. Data were analyzed for 
26 (17 men, 12 women, Mage = 20.03, SDage = 2.09). Three were omitted from analysis due to technical 
issues. This experiment involved a 2x2 mixed design with agent transparency as the within-subjects 
independent variable and communication framing as the between-subjects independent variable. Agent 
transparency was tested at two levels: (a) L1+2: containing reasoning information, and (b) L1+2+3+U 
containing reasoning and projection with projection uncertainty information. Communication framing was 
tested as two contrasting attitudes from the agent: (a) Critical: highlighting a parameter of the chosen plan 
that is not satisfied, and (b) Complimentary: highlighting a parameter of the chosen plan that is optimal. The 
user interface varied per condition by showing corresponding pieces of SAT-level information on a map 
display, in text, and on a sliding bar scale (Figure 5). Prior to the experimental trials, participants received 
about 1 hour of training. The experiment was divided into 2 blocks of 8 missions. Transparency order and 
communication framing were counterbalanced within sets of four participants, within which the scenarios 
where the agent’s recommendations were correct and incorrect were held constant. The choice of correct and 
incorrect scenarios was randomized for each set but kept the 5 correct and 3 incorrect ratio described below. 
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Using the interface presented in Figure 5a, participants were presented with two plan options to complete 
each mission. Both plans were viable and were balanced in their fulfillment of the mission needs, but optimal 
plans prioritized the commander’s intent and addressed more mission goals and needs. The agent always 
recommended one plan over the other, and the participant’s task was to select the best plan based on current 
mission requirements. After the participant made the initial selection, an update informed the participant and 
agent of an aspect of the scenario which had evolved after the initial plans were generated (Figure 5b). Once 
the update was acknowledged, the agent re-assessed the plans and informed the participant of a parameter 
that had either remained or become suboptimal (criticizing condition) or had remained or become optimal 
(complimentary condition). The participant confirmed or changed the plan based on the new information. 
While the transparency manipulation applied throughout the entire interaction, the communication framing 
manipulation only applied post-update. Reliability of the agent was held constant such that its initial 
recommendation was correct for 5 of every 8 scenarios. The agent’s post-update assessment was correct in 
all scenarios (though no actual recommendation was made for the post-update plan decision). Participants 
assessed their trust and perception of the agent after each block of scenarios. Within each block, participants 

 
(a) 

 

 
(b) 

Figure 5.   Multiple-heterogeneous UxV control mission plan decision (a) and mission update decision 
(b) screenshots. 
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also filled out items for usefulness and reliance following each of the eight initial mission plan decisions. 

3.2 Results 
To investigate the influence of both transparency and framing, as well as to account for order effects, a series 
of 2 (low & high transparency) x 2 (complimentary & critical framing) x 2 (transparency block order) mixed 
model ANOVAs were run with transparency as the within-subjects variable. We reported here only main 
effects and interactions for transparency and framing; including order in the analysis is important to account 
for order effects, but is not of specific interest here. Correlations were then run to help with interpretation. In 
light of relatively low statistical power, we reported trends with a p-value greater than .05 but less than .10. 

3.2.1 Operator Performance 

There were no significant task performances differences. However, for agreement with the agent, there was a 
main effect for transparency, F(1,26) = 4.28, p = .049, η2

p = .141, as well as an interaction between 
transparency and framing, F(1,26) = 5.35, p = .029, η2

p = .171. Agreement with the complimentary agent 
was consistent between transparency conditions. In contrast, agreement with the critical agent was higher in 
the low transparency automation condition than in the high transparency condition (Figure 6). 

 

Figure 6. Mean number of scenarios per block participants agreed with the agent. 

3.2.2 Operator Trust in Agent 

Trust results were mixed. Trust Survey 1 [26] revealed no significant findings, but a main effect trend for 
framing, F(1,26) = 3.97, p = .057, η2

p = .132. Participants were more trusting when the agent was critical 
(Figure 7). With regard to trust in the agent’s ability to integrate and display analyzed information, Trust 
Survey 2 [23] revealed a significant main effect for transparency, F(1,26) = 6.5, p = .017, η2

p = .200. There 
were no other significant findings, but a trend suggests the possibility of an interaction between transparency 
and framing were there more statistical power, F(1,26) = 3.4, p = .077, η2

p = .116. Participants were 
relatively distrustful of the low transparency complimentary agent (Figure 8).  

3.2.3 Perceptions of Agent 

There were main effects of both transparency, F(1,26) = 4.9, p = .036, η2
p = .16, and a non-significant 

interaction trend between the variables, F(1,26) = 3.9, p = .058, η2
p = .13, for perceptions of agent aptitude 

with regard to integrating and displaying information [27]. Regarding perceptions of agent aptitude in 
suggesting plan decisions, there were also main effects for transparency, F(1,26) = 5.4, p = .028, η2

p = .17, 
and framing, F(1,26) = 4.8, p = .038, η2

p = .16, but an interaction was not significant p > .10. In both cases, 
participants perceived the agent to be more apt when transparency was high. Perceptions of agent aptitude 



Agent Transparency and Human-Autonomy Teaming Effectiveness      

21 - 8 STO-MP-HFM-300 

 

 

when integrating and displaying information were higher when the agent framed the update plan critically 
(Figure 9). For suggesting decisions, the interaction was driven by the difference between the low 
transparency complimentary condition and the other three conditions. There were no significant (or trends 
of) differences between condition in perceived automation reliability (p > .10).  

 

Figure 7. Trust Survey 1 ratings  

 

Figure 8. Trust Survey 2 ratings 

 

Figure 9. Automation aptitude ratings  
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3.2.4 Post Scenario Ratings 

There was a strong main effect of transparency, F(1,26) = 49.59, p < .001, η2
p = .656, and of framing F(1,26) 

= 11.87, p = .002, η2
p = .314, for ratings of automation interface usefulness; participants found the high 

transparency and critical agent configurations to be more useful, respectively (Figure 10). For reliance, there 
were also main effects for transparency, F(1,26) = 46.82, p < .001, η2

p = .643, and framing, F(1,26) = 12.56, 
p = .002, η2

p = .326. Participants reported more reliance when transparency was high and the update 
assessment was critical in nature (Figure 11).

 

Figure 10. Ratings of usefulness of the automation’s transparency information interface. 

 

Figure 11. Reliance on the automation’s transparency information interface. 

4.0 CONCLUSIONS 

Results from these studies completed as part of the IMPACT program yielded several insights to the utility 
of transparency, as well as best practices for implementing information transparency as part of an intelligent 
agent’s interface. Primarily, it was found that agent transparency, as operationalized and implemented 
according to Chen et al.’s SAT model, is useful for improving performance in complex decision making 
such as that done in multi-UxV management tasks. Additionally, this performance is increased without a cost 
to workload. However, it should be noted that response time does increase for a few seconds, which may or 
may not create an issue depending on the mission environments. Overall, the results showed that perceptions 
of the IA (its aptitude and usefulness) increased with agent transparency. Trust survey results showed that the 
complimentary IA was rated as less trustworthy compared with the critical IA, especially in low transparency 
conditions. Participants tended to agree more with the critical IA when it was more opaque than when it was  
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more transparent; on the other hand, participants’ agreements with the complimentary IA did not differ 
regardless of the IA’s transparency. 

Additional research is needed which explores human-agent teaming in a more bidirectional manner. Future 
studies will examine human-agent teaming with bidirectional communications to evaluate the utility of SAT-
based interfaces in a dynamic manner [4]. This can be used to inform the design of field research being done 
with finalized intelligent agents that are capable of behaving independently. Additional efforts will also focus 
on developing a repository of user interface design elements (e.g., visualizations) to support SAT-based 
interfaces.  
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